Split semi-biplanes in antiregular generalized quadrangles
نویسندگان
چکیده
منابع مشابه
Split Semi-Biplanes in Antiregular Generalized Quadrangles
There are a number of important substructures associated with sets of points of antiregular quadrangles. Inspired by a construction of P. Wild, we associate with any four distinct collinear points p, q, r and s of an antiregular quadrangle an incidence structure which is the union of the two biaffine planes associated with {p, r} and {q, s}. We investigate when this incidence structure is a sem...
متن کاملProbabilistic constructions in generalized quadrangles
We study random constructions in incidence structures, and illustrate our techniques by means of a well-studied example from finite geometry. A maximal partial ovoid of a generalized quadrangle is a maximal set of points no two of which are collinear. The problem of determining the smallest size of a maximal partial ovoid in quadrangles has been extensively studied in the literature. In general...
متن کاملCharacterizations of Generalized Quadrangles by Generalized Homologies
Let S= (P, B, I) be a generalized quadrangle of order (s, t). For X, y E P, X+ y. let X(x, y) be the group of all collineations of S fixing x and y linewise. If ZE (4 YJL> then the set of all points incident with the line xz (resp. y;) is denoted by z(resp. 3. The generalized quadrangle S = (P, B, I) is said to be (x, y)-transitive, x+ y, if X(x, y) is transitive on each set Z{x, z} and jZ’-{ y...
متن کاملFoundations of elation generalized quadrangles
In these notes we are interested in the following fundamental question: “Given a thick generalized quadrangle S(x) with elation point (respectively center of transitivity) x , when does the set of all elations about x form a group?”. It was the general belief for a long time that this is usually the case. However, the goal of these notes is to show that this belief is wrong. To that end, we wil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 1997
ISSN: 1370-1444
DOI: 10.36045/bbms/1105737767